Baca: Soal dan Pembahasan - Persamaan Nilai Mutlak. Berikut disajikan soal dan pembahasan terkait pertidaksamaan nilai mutlak. Soal juga dapat diunduh dengan mengklik tautan berikut: Download (PDF, 133 KB). Semoga bermanfaat dan dapat dijadikan referensi untuk belajar. Tandapertidaksamaan tidak berubah jika pada ruas kiri dan kanan dikali atau dibagi dengan bilangan positif. Tanda pertidaksamaan berubah atau dibalik jika pada ruas kiri dan kanan dikali atau dibagi dengan bilangan negatif. Dari aturan di atas, diperoleh perhitungan sebagai berikut. Jadi, himpunan penyelesaian dari pertidaksamaan adalah . Berbedadari persamaan, pertidaksamaan ditandai dengan tanda kurang dari atau sama dengan (≤), lebih dari (>), lebih dari atau sama dengan (≥), atau tanda kurang dari (<). Tentukan himpunan penyelesaian dari pertidaksamaan nilai mutlak berikut ini persamaan nilai mutlak adalah persamaan yang memuat variabel di dalam tanda mutlak. Jawabanhimpunan penyelesaian dari adalah . Pembahasan Pertidaksamaan linear satu variabel merupakan suatu kalimat terbuka yang hanya mempunyai satu variabel dan berderajat satu serta memuat hubungan () adalah pertidaksamaan linear satu variabel. Sehingga, Dengan demikian, himpunan penyelesaian dari adalah . Mau dijawab kurang dari 3 menit? PenilaianHarian Kerjakan soal-soal di bawah ini dengan benar! 1. 2. 3. Tentukan himpunan penyelesaian dari pertidaksamaan berikut! a. 12-3xl Tentukanhimpunan penyelesaian dari pertidaksamaan linier dua variabel di bawah ini! Penyelesaian: Langkah 1: menentukan titik potong pada sumbu x, berarti y = 0. x - 2y = -2. x - 2.0 = -2. x = -2. Titik sumbu x adalah (-2, 0) Berikut adalah contoh soal pertidaksamaan kuadrat dua variabel agar kamu semakin paham materi tersebut. Contoh soal 2. . PembahasanPertidaksamaan linear satu variabel merupakansuatu kalimat terbuka yang hanya mempunyaisatu variabeldan berderajatsatuserta memuat hubungan adalah pertidaksamaan linear satu variabel. Sehingga, Dengan demikian, himpunan penyelesaian dari adalah .Pertidaksamaan linear satu variabel merupakan suatu kalimat terbuka yang hanya mempunyai satu variabel dan berderajat satu serta memuat hubungan adalah pertidaksamaan linear satu variabel. Sehingga, Dengan demikian, himpunan penyelesaian dari adalah . Tentukan himpunan penyelesaian dari pertidaksamaan berikut! 2x – 5 > 3 Jawab 2x – 5 > 3 Jadi himpunan penyelesaiannya adalah {x x 4}. - Jangan lupa komentar & sarannya Email nanangnurulhidayat 1. Batas-batas pertidaksamaan 5x – 7 > 13 adalah...a. x 4c. x > -4d. x 135x > 20x > 4Jawaban B 2. Semua bilangan positif x yang memenuhi pertidaksamaan √x ¼d. x > 4e. x ≤ 4Pembahasan x1 – 4x ¼Jawaban C 3. Bentuk yang setara ekuivalen dengan 4x-5 -13e. -12 2d. x 2e. x 25Pembahasan p – 25 p – 5 = 0 p = 25 dan p = 5Untuk p = 25, maka nilai x x = 2Untuk p = 5, maka nilai x x = 1HP = {1 5}Pembahasan -x + 5 x + 1 ≤ 0 x ≥ 5 atau x ≤ -1Jawaban D 6. Pertidaksamaan , dipenuhi oleh...a. 0 ≤ x ≤ 1b. -8 ≤ x 5 maka nilai a adalah ...a. -3/4b. -3/8c. 3/8d. ¼e. ¾Pembahasan Dari soal diketahui x > 5 kita anggap x = 5, maka kita subtitusikan 10 – 3a = 7+5a 8a =3 a = 3/8jawaban C 8. Agar pertidaksamaan benar, maka nilai x haruslah...a. x ≤ -2 atau 3 1d. x 1e. x 7 adalah ...a. -3 7b. x 5Pembahasanx-27 maka2x – 3 72x > 10x > 5HP = {-3 12b. 0 6√2c. 0 8d. 0 4√3e. 0 6PembahasanPanjang = pLebar = aK = 20 m2 p + a = 202p + 2a = 202p = 20 – 2aP = 10 – aL 6 } Jawaban E 12. Bentuk 5-5x -5e. 0 0x > -3Nilai 2x + 4 juga harus positif, maka2x + 4 > 02x > -4x > -2x + 3 > 2x + 4-x > 1x -1/2}e. {x∣ x ≤ -3 atau x > -1/2}Pembahasan -2x – 6 ≥ 0 -2x ≥ 6 x ≤ -3 berarti x 2x + 1 -1/2HP = { x ≤ -3 atau x > -1/2}Jawaban E 15. Semua nilai x yang memenuhi xx-2 2 atau x 9 atau x 9 atau x 9 atau x 0Karena p selalu positif, maka p + 2 > 0, untuk setiap x real, makaP – 6 > 0x-3-6>0x – 3 + 6 x – 3 – 6 > 0x + 3 x – 9 > 0Diperoleh batas x = -3 dan x = 9 sehingga harga x yang memenuhi adalah x 9Jawaban E 22. Nilai x yang memenuhi adalah ...a. 4 5b. -1/3 3PembahasanUntuk setiap x real, maka D < 0 4m m – 5 < 0 m = 0 dan m = 5daerah hasilnyaHP = { 0 < x < 5}Jawaban C 24. Nilai-nilai x yang memenuhi x + 3 ≤ 2x adalah ...a. x ≤ -1 atau x ≥3b. x ≤ -1 atau x ≥1c. x ≤ -3 atau x ≥ -1d. x ≤ 1 atau x ≥ 3e. x ≤ -3 atau x ≥ 1Pembahasan x + 3 ≤ 2x x + 3 + 2xx + 3 – 2x ≤ 03x + 3 -x + 3 ≤ 0x = -1 dan x = 3daerah hasilnya adalahHP = { x ≤ -1 atau x ≥ 3}Jawaban A 25. Diketahui Jikq p = xy maka batas-batas nilai p adalah ...a. -15 < p < 10b. 3 < p < 10c. -10 < p < 15d. -10 < p < 3e. 10 < p < 15Pembahasan x + 5 x – 1 < 0Diperoleh -5 < x < 1 y + 2 y – 3 < 0Diperoleh -2 < y < 3P = xyBatas atas p = -5 . -2 = 10Batas bawah p = -5 . 3 = -15Jadi, batas-batas nilai p adalah -15 < p < 10Jawaban A PembahasanBeberapa sifat yang perlu diperhatikan dalam menyelesaikan pertidaksamaan adalah sebagai berikut. Tanda pertidaksamaan tidak berubah jika pada ruas kiri dan kanan ditambah atau dikurang dengan bilangan negatif atau bilangan positif. Tanda pertidaksamaan tidak berubah jika pada ruas kiri dan kanan dikali atau dibagi dengan bilangan positif. Tanda pertidaksamaan berubah atau dibalik jika pada ruas kiri dan kanan dikali atau dibagi dengan bilangan negatif. Dari aturan di atas, diperoleh perhitungan sebagai berikut. Dengan demikian himpunan penyelesaiannya adalah Jadi, himpunan penyelesaian dari pertidaksamaan adalah .Beberapa sifat yang perlu diperhatikan dalam menyelesaikan pertidaksamaan adalah sebagai berikut. Dari aturan di atas, diperoleh perhitungan sebagai berikut. Dengan demikian himpunan penyelesaiannya adalah Jadi, himpunan penyelesaian dari pertidaksamaan adalah . PembahasanPerhatikan perhitungan berikut ini! x 2 − 7 x + 12 ≤ 0 x − 4 x − 3 ≤ 0 x − 4 x ​ = = ​ 0 4 ​ atau x − 3 x ​ = = ​ 0 3 ​ Garis pembuat nolnya sebagai berikut Tentukan uji beberapa titik! x = 0 → y = 0 2 − 7 0 + 12 = 12 x = 3 , 5 → y = 3 , 5 2 − 7 3 , 5 + 12 = − 0 , 25 x = 5 → y = 5 2 − 7 5 + 12 = 2 Karena tanda pertidaksamaannya adalah ≤ maka daerah penyelesaiannya adalah yang bernilai negatif, yaitu 3 ≤ x ≤ 4 . Dengan demikian, penyelesaianpertidaksamaan x 2 − 7 x + 12 ≤ 0 adalah 3 ≤ x ≤ 4 .Perhatikan perhitungan berikut ini! atau Garis pembuat nolnya sebagai berikut Tentukan uji beberapa titik! Karena tanda pertidaksamaannya adalah maka daerah penyelesaiannya adalah yang bernilai negatif, yaitu . Dengan demikian, penyelesaian pertidaksamaan adalah .

tentukan penyelesaian dari pertidaksamaan berikut